Publications

Journal Publications

  1. J. Renna, J. Stukel, R. Willits, and E. Engeberg, “Dorsal root ganglia neurite outgrowth measured as a function of changes in microelectrode array resistance,” PLOS ONE, 2017, DOI: https://doi.org/10.1371/journal.pone.0175550
  2. B. Kent and E. Engeberg, “Robotic Hand Acceleration Feedback to Synergistically Prevent Grasped Object Slip,” IEEE Transactions on Robotics, vol. 33, p. 492-499, 2017, DOI: http://dx.doi.org/10.1109/TRO.2016.2633574
  3. S. Dilibal, H. Sahin, E. Dursun, and E. Engeberg, “Nickel-Titanium Shape Memory Alloy Actuated Thermal Overload Protection Relay System Designs, ”Electrical Engineering, 2016, DOI: http://dx.doi.org/10.1007/s00202-016-0458-2
  4. P. Kumar, R. Adams, A. Harkins, E. Engeberg, and R. Willits, “Stimulation frequency alters dorsal root ganglion neurite growth and directionality in vitro,” IEEE Transactions on Biomedical Engineering, http://dx.doi.org/10.1109/TBME.2015.2492998
  5. A. Hegana, S. I. Hariharan, and E. Engeberg, “Electromechanical Conversion of Low Temperature Waste Heat via Helical Shape Memory Alloy Actuators,” IEEE/ASME Transactions on Mechatronics, 2016, vol. 21, p. 1434-1444, DOI: http://dx.doi.org/10.1109/TMECH.2015.2481087
  6. Engeberg, S. Dilibal, M. Vatani, J. Choi, and J. Lavery, “Anthropomorphic Finger Antagonistically Actuated by SMA Plates,” Bioinspiration & Biomimetics, vol. 10, 2015, DOI: http://dx.doi.org/10.1088/1748-3190/10/5/056002
  7. Vatani, E. Engeberg, and J. Choi, “Combined 3D Printing Technologies and Materials for Fabrication of Tactile Sensors,” International Journal of Precision Engineering and Manufacturing, vol. 16, p. 1375-1383, 2015, DOI: http://dx.doi.org/10.1007/s12541-015-0181-3
  8. Vatani, E. Engeberg, and J. Choi, “Conformal Direct-Print of Piezoresistive Polymer/Nanocomposites for Compliant Multi-Layer Tactile Sensors,” Additive Manufacturing, 2015, DOI: http://dx.doi.org/10.1016/j.addma.2014.12.009
  9. Kent and E. Engeberg, “Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand,” Bioinspiration & Biomimetics, vol. 9, 2014, DOI: http://dx.doi.org/10.1088/1748-3182/9/4/046008
  10. Kent, N. Karnati, and E. Engeberg, “Electromyogram Synergy Control of a Dexterous Artificial Hand,” Journal of NeuroEngineering and Rehabilitation, vol. 11, 2014, DOI: http://dx.doi.org/10.1186/1743-0003-11-41
  11. Vatani, E. Engeberg, and J. Choi, “Detection of the position, direction and speed of sliding contact with a multi-layer compliant tactile sensor fabricated using direct-print technology,” Smart Materials and Structures, vol. 23, p. 2014, http://dx.doi.org/10.1088/0964-1726/23/9/095008
  12. Kent and E. Engeberg, “Grasp Dependent Slip Prevention for a Dexterous Artificial Hand,” International Journal of Humanoid Robotics, vol. 11, 2014, DOI: http://dx.doi.org/10.1142/S0219843614500169
  13. Kent, J. Lavery, and E. Engeberg, “Anthropomorphic Control of a Dexterous Artificial Hand via Task Dependent Temporally Synchronized Synergies,” Journal of Bionic Engineering, vol. 11, p. 236-248, 2014, DOI: http://dx.doi.org/10.1016/S1672-6529(14)60044-5
  14. Karnati, B. Kent and E. Engeberg, “Bioinspired Sinusoidal Finger Joint Synergies for a Dexterous Robotic Hand to Screw and Unscrew Objects of Different Diameters,” IEEE/ASME Transactions on Mechatronics, In a Focused Issue on Bio-Inspired Mechatronics, vol. 18, p. 612-623, 2013, DOI: http://dx.doi.org/10.1109/TMECH.2012.2222907
  15. Andrecioli and E. Engeberg, “Adaptive sliding manifold slope via grasped object stiffness detection with a prosthetic hand,” Mechatronics, vol. 23, p. 1171-1179, 2013, DOI: http://dx.doi.org/10.1016/j.mechatronics.2013.10.006
  16. Vatani, E. Engeberg, and J. Choi, “Force and slip detection with direct-write compliant tactile sensors using multi-walled carbon nanotubes/polymer composites,” Sensors and Actuators A: Physical, vol. 195, p. 90-97, 2013, DOI: http://dx.doi.org/10.1016/j.sna.2013.03.019
  17. Engeberg, “Human Model Reference Adaptive Control of a Prosthetic Hand,” Journal of Intelligent & Robotic Systems, vol. 72, p. 41-56, 2013, DOI: http://dx.doi.org/10.1007/s10846-013-9815-9
  18. Engeberg, “Adaptive Human Control Gains During Precision Grip,” International Journal of Advanced Robotic Systems, vol. 12, p. 1-12, 2013, DOI: http://dx.doi.org/10.5772/55479
  19. Engeberg and S. Meek, “Adaptive Sliding Mode Control for Prosthetic Hands to Simultaneously Prevent Slip and Minimize Deformation of Grasped Objects,” IEEE/ASME Transactions on Mechatronics, vol. 18, p. 376-385, 2013, DOI: http://dx.doi.org/10.1109/TMECH.2011.2179061
  20. Engeberg, “A physiological basis for control of a prosthetic hand,” Biomedical Signal Processing and Control, vol. 8, p. 6-15, 2013, DOI: http://dx.doi.org/10.1016/j.bspc.2012.06.003
  21. Engeberg and S. Meek, “Enhanced visual feedback for slip prevention with a prosthetic hand,” Prosthetics and Orthotics International, vol. 36, p. 423-429, 2012, DOI: http://dx.doi.org/10.1177/0309364612440077
  22. Engeberg and S. Meek, “Backstepping and Sliding Mode Control Hybridized for a Prosthetic Hand,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 17, p. 70-79, Feb. 2009, DOI: http://dx.doi.org/10.1109/TNSRE.2008.2006212
  23. Engeberg, S. Meek, and M. Minor, “Hybrid Force-Velocity Sliding Mode Control of a Prosthetic Hand,” IEEE Transactions on Biomedical Engineering, vol. 55, p. 1572-1581, May 2008, DOI: http://dx.doi.org/10.1109/TBME.2007.914672
  24. Engeberg and S. Meek, “Improved Grasp Force Sensitivity For Prosthetic Hands Through Force Derivative Feedback,” IEEE Transactions on Biomedical Engineering, vol. 55, p. 817-821, Feb. 2008, DOI: http://dx.doi.org/10.1109/TBME.2007.912675